UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level | CANDIDATE
NAME | | | | | |-------------------|--|---------------------|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY 5070/02 Paper 2 Theory October/November 2009 1 hour 30 minutes Candidates answer on the Question Paper. No Additional Materials are required. #### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. #### **Section A** Answer all questions. Write your answers in the spaces provided in the Question Paper. #### Section B Answer any three questions. Write your answers in the spaces provided in the Question Paper. A copy of the Periodic Table is printed on page 20. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. | For Examiner's Use | | | | | |--------------------|--|--|--|--| | Section A | | | | | | В7 | | | | | | B8 | | | | | | В9 | | | | | | B10 | | | | | | Total | | | | | This document consists of 18 printed pages and 2 blank pages. ### **Section A** For Examiner's Use Answer all the questions in this section in the spaces provided. The total mark for this section is 45 A1 (a) Choose from the following compounds to answer the questions below. ammonium sulfate calcium oxide copper(II) chloride ethanoic acid ethene nitrogen dioxide sodium iodide sulfur dioxide Each compound can be used once, more than once or not at all. Which compound | (i) | may be formed when alkanes are cracked, | |-------|--| | (ii) | forms a yellow precipitate with aqueous silver nitrate, | | (iii) | is used as a fertiliser, | | (iv) | is a pollutant arising from lightning activity, | | (v) | is used by farmers to reduce soil acidity, [1] | | (vi) | forms an alkaline solution when it reacts with water? [1] | | Def | ine the term <i>compound</i> . | | | | © UCLES 2009 5070/02/O/N/09 (b) | dissolved in water. | For
Examiner's
Use | |---------------------|--------------------------| | [2] | | | [Total: 9] | | **A2** In the presence of yeast, aqueous glucose, $C_6H_{12}O_6$, is changed into carbon dioxide and ethanol. For Examiner's Use (a) Write the equation for this reaction. | · | | - | |---|----|---| | | 11 | | | | | | | | | | (b) Name this reaction. (c) Suggest how the speed of this reaction varies as the temperature changes from 20 to 60 °C. ``` [2] ``` (d) Carbon dioxide is also formed when calcium carbonate reacts with hydrochloric acid. $$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$ The graph shows how the volume of carbon dioxide changes when calcium carbonate powder reacts with excess 0.5 mol/dm³ hydrochloric acid. On the same axes, sketch the curve you would expect when the experiment is repeated using the same amount of calcium carbonate and excess 1.0 mol/dm³ hydrochloric acid. [2] Fig. 1 [Total: 6] | А3 | | | contains mainly nitrogen and oxygen together with small amounts of argon and dioxide. | For
Examiner's
Use | |----|-----|-------|--|--------------------------| | | (a) | Stat | te the approximate percentages of nitrogen and oxygen in dry air. | | | | | nitro | ogen% oxygen% [1] | | | | (b) | Dry | air contains about 1% of the argon-40 isotope, $^{40}_{18}$ Ar. | | | | | (i) | What do you understand by the term isotope? | | | | | | | | | | | | [1] | | | | | (ii) | State the number of electrons and neutrons in this isotope of argon. | | | | | | number of electrons | | | | | | number of neutrons[1] | | | | (c) | | on is used in the manufacture of titanium. In this process titanium(IV) chloride, ${ m TiC}l_4$, educed with hot sodium. The products are titanium and sodium chloride. | | | | | (i) | Write an equation for the reaction between titanium(IV) chloride and sodium. | | | | | | [1] | | | | | (ii) | During this reaction argon is blown over the mixture of sodium and titanium(IV) chloride. | | | | | | Suggest why the reaction is carried out in an atmosphere of argon. | | | | | | [1] | | | | (d) | | mall amount of xenon is present in the air. Several compounds of xenon have been
de in recent years. | | | | | A c | ompound of xenon contained 9.825g of xenon, 1.200g of oxygen and 5.700g of rine. | | | | | | ermine the empirical formula of this compound. | | | | | | | | [3] [Total: 8] For Examiner's Use | A4 Methylamine, CH₃NH₂, is a base which has similar properties to ammonia. When methylamine dissolves in water, the following equilibrium is set up. CH₃NH₂ + H₂O | | | | | | | | | | |--|-----|------------|----------------------------------|---------------------|------------------|----------------------|--|----------|---| | | | | CH ₃ N | H ₂ + | H ₂ O | \rightleftharpoons | CH ₃ NH ₃ ⁺ | + | OH- | | | (a) | Exp | lain why meth | ylamine I | behaves | as a ba | ase in this re | eaction | | | | | | | | | ••••• | | | [1] | | | (b) | pre
Sug | cipitate is obse | erved. | | | · | | III) chloride, a red-brown mine is added to aqueous | [1] | | | (c) | | hylamine is a perature and p | - | | e volun | ne occupied | l by 6.2 | 2g of methylamine at room | [2] | | | (d) | | hylamine is m
sence of a cata | | eacting m | nethand | ol with exces | ss amm | nonia under pressure in the | | | | | CH | I ₃ OH + | NH ₃ | \rightarrow | CH ₃ NH ₂ | + H | ₂ O | | | | (i) | Define the te | rm <i>catal</i> y | ∕st. | | | | | | | | | | | | | | | [1] | | | | (ii) | Calculate the methanol. | theoreti | cal yield | of met | hylamine tha | at can | be obtained from 240 kg of | [2] | | | | | | | | | | | [Total: 7] | | | | | | | | | | | | | (a) | Write an | equation for this | reaction. | | | |-----|----------------------|---------------------------------------|--|--|-----------------------| | | | | | | [1] | | (b) | The bror | mine is purified be a test for sulfur | y treatment with sulfur odioxide. | dioxide. | | | | test | | | | | | | result | | | | [2] | | (c) | | is a halogen.
e the table to est | imate both the density | and boiling point of I | bromine. | | | | halogen | density of solid halogen in g/cm ³ | boiling point
/°C | | | | | fluorine | 1.51 | -188 | | | | | chlorine | 1.56 | -35 | | | | | bromine | | | | | | | iodine | 4.93 | 184 | | | (d) | A technic | cian spilt some b | low boiling point and a | a room which is fre | | | (d) | A technic | cian spilt some b | | a room which is fre | ee of draughts. After | | (d) | A technic | cian spilt some b
conds the bromin | romine in the corner of | a room which is fre | ee of draughts. After | | (d) | A technic | cian spilt some b
conds the bromin | romine in the corner of | a room which is free other side of the ro | ee of draughts. After | | (d) | A technic thirty sec | cian spilt some beconds the bromin | promine in the corner of the could be smelt on the | a room which is free other side of the whic | oom. | [Total: 8] For Examiner's Use | (a) | | · · | present high in t | | | th. | | |------------------------------------|-----------------|--------------------------------|-----------------------------------|------------|-----------------|-------------|-----------------------------| | | | | | | | | | | | | | | | | | [2 | | (b) | | rocarbons, C
equation for t | FCs, catalyse th
his reaction. | ie convers | ion of ozone to | oxygen. | | | | | | | | | | [1 | | (c) | | | both the world e have changed | | | e amount of | · high leve | | | 1000 ¬ | | | | | | | | | 900 - | | CF | C produc | tion | | 40 | | nes | 800 - | • | | | | | units | | CFC production/thousands of tonnes | 700 | | | | | | gh level ozone/Dobson units | | sands | 600 - | V | • | | | | ne/E | | /thous | 500 - | | | | | | vel ozo | | Iction | 400 * | _ | • | 0.00 | ount of among | _200 | gh le | | produ | 300 - | × : | ** \ | am
\ | ount of ozone | _ 150 | t of hię | | CFC | 200 - | | ** | * | * | 100 | amount of hi | | | 100 - | | | | | _ 50 | to | | | <u> </u>
198 | 0 | 1990
ve | ear | 2000 | 2006 | | | | | | • | | | | | | | | | Fig | ı. 3 | | | | For Examiner's Use | (ii) | What evidence, if any, is there to indicate a link between the world CFC production and the amount of high-level ozone in the atmosphere at the South Pole? | For
Examiner's
Use | |------|---|--------------------------| | | Explain your answer. | | | | | | | | | | | | | | | | [2] | | | | [2] | | | | [Total: 7] | | # Section B For Examiner's Use Answer three questions from this section. The total mark for this section is 30. | В7 | Cop | oper | is purified by the electrolysis of aqueous copper(II) sulfate using copper electrodes. | |----|-----|------|--| | | (a) | | plain how this process is carried out in the laboratory and give relevant equations for electrode reactions. | [4] | | | (h) | | ueous copper(II) sulfate can also be electrolysed using carbon electrodes. | | | (2) | (i) | Write an equation for the reaction which takes place at the anode in this electrolysis. | | | | | [1] | | | | (ii) | Explain why the colour of the copper(II) sulfate solution fades during this electrolysis. | | | | | | | | | | [1] | | | (c) | Cop | oper is a transition element. | | | | (i) | Name two transition elements, or compounds of transition elements, which are used as catalysts. For each catalyst name an industrial product made using the catalyst. | [2] | | For
Examiner's
Use | elements. | (11) | |--------------------------|-------------|------| | | [2] | | | | [Total: 10] | | **B8** Fumaric acid is a colourless solid which can be extracted from plants. For Examiner's Use Fig. 4 | (a) | Describe the reaction of aqueous fumaric acid with aqueous bromine, giving the equation for the reaction and stating any observations. | |-----|---| | | | | | | | | | | | | | | | | | [3] | | (b) | A solution of fumaric acid was titrated against aqueous sodium hydroxide. | | | $\mathrm{HO_{2}CCH=CHCO_{2}H}$ + $\mathrm{2NaOH}$ \rightarrow $\mathrm{NaO_{2}CCH=CHCO_{2}Na}$ + $\mathrm{2H_{2}O}$ | | | 18.0 cm ³ of 0.200 mol/dm ³ sodium hydroxide were required to neutralise 60.0 cm ³ of fumaric acid solution. | | | Calculate the concentration, in mol/dm ³ , of the fumaric acid solution. | | | | | | | | | | | | | | | | | | [3] | | (c) | Suggest the type of condensation polymer which is made when fumaric acid reacts with ethane-1,2-diol, HO—CH ₂ —CH ₂ —OH | Fo
Exami
Us | |-----|---|-------------------| | | [1] | | | (d) | Nylon is a condensation polymer. State one use of nylon. | | | | [1] | | | (e) | Describe two pollution problems caused by the disposal of non-biodegradable plastics. | | | | | | | | | | | | | | | | [2] | | | | [Total: 10] | | **B9** The diagram shows the carbon cycle. For Examiner's Use Fig. 5 | (a) | Describe the process of photosynthesis in simple terms. | |--------------|--| | | | | | | | | [2] | | / L \ | Drow a det and group diagram for earlier diavide abouting the outer electrons only | **(b)** Draw a dot-and-cross diagram for carbon dioxide showing the outer electrons only. [1] | (c) | | ny scientists think that the burning of hydrocarbons such as octane, C ₈ H ₁₈ , contributes climate change. | For
Examiner's
Use | |-----|------|--|--------------------------| | | (i) | Write an equation for the complete combustion of octane. | | | | | [1] | | | | (ii) | Why do some scientists think that the burning of hydrocarbons contributes to climate change? | | | | | [1] | | | (d) | | the oceans carbon dioxide reacts with carbonate ions in seawater to form drogencarbonate ions. | | | | | $CO_2 + H_2O + CO_3^{2-} \rightleftharpoons 2HCO_3^{-}$ | | | | (i) | Microscopic plants remove carbon dioxide from the surface waters of the oceans. What effect does this have on the reaction above? Explain your answer. | [2] | | | | (ii) | Name a carbonate compound which is soluble in water. | | | | (, | [1] | | | , , | 0 1 | | | | (e) | | lcium carbonate is used in flue gas desulfurisation. scribe this process and explain why it is important for the environment. | [2] | | | | | [Total: 10] | | | | | [Total: To] | | For Examiner's Use | coke | | |------|--| | (a) | Name an ore of iron. | | | | | (b) | Explain, by reference to the chemical reactions involved, why limestone is used in blast furnace. | , , | | | (c) | Coke burns in oxygen to form carbon dioxide. Explain, in terms of bond breaking and bond making, why this reaction is exothermic | | (c) | Explain, in terms of bond breaking and bond making, why this reaction is exothermic | | (c) | Explain, in terms of bond breaking and bond making, why this reaction is exothermic | | (c) | Explain, in terms of bond breaking and bond making, why this reaction is exothermic | | (c) | Explain, in terms of bond breaking and bond making, why this reaction is exothermic | | (c) | Explain, in terms of bond breaking and bond making, why this reaction is exothermic | | (c) | Explain, in terms of bond breaking and bond making, why this reaction is exothermic | | (c) | Explain, in terms of bond breaking and bond making, why this reaction is exothermic | | | Explain, in terms of bond breaking and bond making, why this reaction is exothermic. In the centre of the blast furnace iron(III) oxide, Fe ₂ O ₃ , is reduced by carbon monoto form iron and carbon dioxide. Near the bottom of the blast furnace the remainiron(III) oxide is reduced by carbon to form iron and carbon monoxide. | | For
Examiner's
Use | How can this iron from the blast furnace be converted to mild steel? | (e) | |--------------------------|--|-----| | | [1] | | | | [Total: 10] | | # **BLANK PAGE** ## **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. DATA SHEET The Periodic Table of the Elements | | | 0 | 4 He Helium | 20
Neon 10 | 40 Ar
Argon | 84 Kr
Krypton 36 | 131 Xe Xenon Xenon 54 | 222
Rn
Radon
86 | | |------------------------------------|-------|-----|--------------------|------------------------|-------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|--------------------------------------| | | • | NII | | 19 T Sluorine | 35.5 C1 Chlorine | 80
Br
Bromine
35 | 127 I lodine 53 | 210 At Astatine 85 | | | | | N | | 16
Oxygen
8 | 32
S
Sulfur
16 | 79 Selenium 34 | 128 Te Tellurium 52 | 209 Po Polonium 84 | | | | | > | | 14 N Nitrogen 7 | 31 P Phosphorus 15 | 75 AS Arsenic 33 | Sb
Antimony
51 | 209 Bi Bismuth | | | | | 2 | | 12
Carbon
6 | 28
Si
Silicon | 73 Ge Germanium 32 | 119 Sn Tin 50 | 207 Pb Lead 82 | | | | • | ≡ | | 11 Boron 5 | 27
A t
Aluminium
13 | 70
Ga
Gallium
31 | 115
In
Indium
49 | 204 T 1 Thallium | | | S | | | | | | 65
Zn
Zinc
30 | Cd
Cadmium
48 | 201 Hg Mercury | | | The Periodic Table of the Elements | | | | | | 64 Cu Copper | 108 Ag
Silver
47 | 197
Au
Gold | | | e of the | Group | | | | | Nickel | 106
Pd
Palladium
46 | 195
Pt
Platinum
78 | | | dic Tabl | Gro | | | | | 59
Co
Cobalt | Rhodium 45 | 192 Ir
Iridium
77 | | | ne Perio | | | T Hydrogen | | | 56
Fe
Iron | 101 Ru Ruthenium 44 | 190
OS
Osmium
76 | | | F | | | | | | Mn
Manganese
25 | Tc
Technetium
43 | 186 Re Rhenium 75 | | | | | | | | | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184 W Tungsten 74 | | | | | | | | | 51
V
Vanadium
23 | 93
Nb
Niobium
41 | 181 Ta Tantalum | | | | | | | | | 48 Ti Titanium 22 | 91 Zr
Zirconium
40 | 178 #
#
Hafinium | | | | | | | | | 45
Sc
Scandium
21 | 89 Y Yttrium 39 | 139 La Lanthanum 57 * | 227
AC
Actinium
89 † | | | | II | | 9 Be Beryllium | 24 Mg Magnesium 12 | 40 Ca Calcium 20 | Strontium | 137 Ba Barium 56 | 226 Ra Radium 88 | | | | - | | 7 Lithium | 23
Na
Sodium | 39 K Potassium | 85 Rb Rubidium 37 | 133
Cs
Caesium
55 | 223 Fr Francium 87 | | 2009 |) | | | | | 5070/02 | /O/N/09 | | | | | 077 | , | , | 177 | 2 | 7 | 7.11 | 7 | 007 | | 701 | 00 | 71 | 11 | | |----------------------------|---------------|--------------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-------------------|-------------------|----------------|--------------------|-----------------|-------------------|---| | anoid series | 140 | 141 | 144 | 147 | OGI. | 761 | /61 | 601 | 791 | | /91 | 601 | 1/3 | 6/1 | | | andid series | ပီ | ቯ | Š | Pm | Sm | Ш | gq | T | ۵ | 운 | й | Tm | Υp | Γn | | | | Cerium
58 | Praseodymium
59 | Neodymium
60 | Promethium
61 | Samarium
62 | Europium
63 | Gadolinium
64 | Terbium
65 | Dysprosium
66 | 67 | Erbium
68 | Thulium
69 | Ytterbium
70 | Lutetium
71 | | | a = relative atomic mass | 232 | 231 | 238 | 237 | 244 | 243 | 247 | 247 | 251 | 252 | 257 | 258 | | 260 | | | X = atomic symbol | 丘 | Ъа | > | d
N | Pu | Am | S | æ | ర | Es | Fm | Md | | בֿ | | | b = atomic (proton) number | Thorium
90 | Protactinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | Americium
95 | Curium
96 | Berkelium
97 | Californium
98 | Einsteinium
99 | Fermium
100 | Mendelevium
101 | Nobelium
102 | Lawrencium
103 | | | | | | | | | | | | | | | | | | ٦ | * 58–71 Lanthanoid series † 90–103 Actinoid series Key The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).