

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 5070/02

Paper 2 Theory

October/November 2009

1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
Section A				
В7				
B8				
В9				
B10				
Total				

This document consists of 18 printed pages and 2 blank pages.

Section A

For Examiner's Use

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45

A1 (a) Choose from the following compounds to answer the questions below.

ammonium sulfate calcium oxide copper(II) chloride ethanoic acid ethene nitrogen dioxide sodium iodide sulfur dioxide

Each compound can be used once, more than once or not at all.

Which compound

(i)	may be formed when alkanes are cracked,
(ii)	forms a yellow precipitate with aqueous silver nitrate,
(iii)	is used as a fertiliser,
(iv)	is a pollutant arising from lightning activity,
(v)	is used by farmers to reduce soil acidity, [1]
(vi)	forms an alkaline solution when it reacts with water? [1]
Def	ine the term <i>compound</i> .

© UCLES 2009 5070/02/O/N/09

(b)

dissolved in water.	For Examiner's Use
[2]	
[Total: 9]	

A2 In the presence of yeast, aqueous glucose, $C_6H_{12}O_6$, is changed into carbon dioxide and ethanol.

For Examiner's Use

(a) Write the equation for this reaction.

·		-
	11	

(b) Name this reaction.

(c) Suggest how the speed of this reaction varies as the temperature changes from 20 to 60 °C.

```
[2]
```

(d) Carbon dioxide is also formed when calcium carbonate reacts with hydrochloric acid.

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

The graph shows how the volume of carbon dioxide changes when calcium carbonate powder reacts with excess 0.5 mol/dm³ hydrochloric acid.

On the same axes, sketch the curve you would expect when the experiment is repeated using the same amount of calcium carbonate and excess 1.0 mol/dm³ hydrochloric acid.

[2]

Fig. 1

[Total: 6]

А3			contains mainly nitrogen and oxygen together with small amounts of argon and dioxide.	For Examiner's Use
	(a)	Stat	te the approximate percentages of nitrogen and oxygen in dry air.	
		nitro	ogen% oxygen% [1]	
	(b)	Dry	air contains about 1% of the argon-40 isotope, $^{40}_{18}$ Ar.	
		(i)	What do you understand by the term isotope?	
			[1]	
		(ii)	State the number of electrons and neutrons in this isotope of argon.	
			number of electrons	
			number of neutrons[1]	
	(c)		on is used in the manufacture of titanium. In this process titanium(IV) chloride, ${ m TiC}l_4$, educed with hot sodium. The products are titanium and sodium chloride.	
		(i)	Write an equation for the reaction between titanium(IV) chloride and sodium.	
			[1]	
		(ii)	During this reaction argon is blown over the mixture of sodium and titanium(IV) chloride.	
			Suggest why the reaction is carried out in an atmosphere of argon.	
			[1]	
	(d)		mall amount of xenon is present in the air. Several compounds of xenon have been de in recent years.	
		A c	ompound of xenon contained 9.825g of xenon, 1.200g of oxygen and 5.700g of rine.	
			ermine the empirical formula of this compound.	

[3]

[Total: 8]

For Examiner's Use

 A4 Methylamine, CH₃NH₂, is a base which has similar properties to ammonia. When methylamine dissolves in water, the following equilibrium is set up. CH₃NH₂ + H₂O									
			CH ₃ N	H ₂ +	H ₂ O	\rightleftharpoons	CH ₃ NH ₃ ⁺	+	OH-
	(a)	Exp	lain why meth	ylamine I	behaves	as a ba	ase in this re	eaction	
						•••••			[1]
	(b)	pre Sug	cipitate is obse	erved.			·		III) chloride, a red-brown mine is added to aqueous
									[1]
	(c)		hylamine is a perature and p	-		e volun	ne occupied	l by 6.2	2g of methylamine at room
									[2]
	(d)		hylamine is m sence of a cata		eacting m	nethand	ol with exces	ss amm	nonia under pressure in the
			CH	I ₃ OH +	NH ₃	\rightarrow	CH ₃ NH ₂	+ H	₂ O
		(i)	Define the te	rm <i>catal</i> y	∕st.				
									[1]
		(ii)	Calculate the methanol.	theoreti	cal yield	of met	hylamine tha	at can	be obtained from 240 kg of
									[2]
									[Total: 7]

(a)	Write an	equation for this	reaction.		
					[1]
(b)	The bror	mine is purified be a test for sulfur	y treatment with sulfur odioxide.	dioxide.	
	test				
	result				[2]
(c)		is a halogen. e the table to est	imate both the density	and boiling point of I	bromine.
		halogen	density of solid halogen in g/cm ³	boiling point /°C	
		fluorine	1.51	-188	
		chlorine	1.56	-35	
		bromine			
		iodine	4.93	184	
(d)	A technic	cian spilt some b	low boiling point and a	a room which is fre	
(d)	A technic	cian spilt some b		a room which is fre	ee of draughts. After
(d)	A technic	cian spilt some b conds the bromin	romine in the corner of	a room which is fre	ee of draughts. After
(d)	A technic	cian spilt some b conds the bromin	romine in the corner of	a room which is free other side of the ro	ee of draughts. After
(d)	A technic thirty sec	cian spilt some beconds the bromin	promine in the corner of the could be smelt on the	a room which is free other side of the room whic	oom.

[Total: 8]

For Examiner's Use

(a)		· ·	present high in t			th.	
							[2
(b)		rocarbons, C equation for t	FCs, catalyse th his reaction.	ie convers	ion of ozone to	oxygen.	
							[1
(c)			both the world e have changed			e amount of	· high leve
	1000 ¬						
	900 -		CF	C produc	tion		40
nes	800 -	•					units
CFC production/thousands of tonnes	700						gh level ozone/Dobson units
sands	600 -	V	•				ne/E
/thous	500 -						vel ozo
Iction	400 *	_	•	0.00	ount of among	_200	gh le
produ	300 -	× :	** \	am \	ount of ozone	_ 150	t of hię
CFC	200 -		**	*	*	100	amount of hi
	100 -					_ 50	to
	<u> </u> 198	0	1990 ve	ear	2000	2006	
			•				
			Fig	ı. 3			

For Examiner's Use

(ii)	What evidence, if any, is there to indicate a link between the world CFC production and the amount of high-level ozone in the atmosphere at the South Pole?	For Examiner's Use
	Explain your answer.	
	[2]	
	[2]	
	[Total: 7]	

Section B

For Examiner's Use

Answer three questions from this section.

The total mark for this section is 30.

В7	Cop	oper	is purified by the electrolysis of aqueous copper(II) sulfate using copper electrodes.
	(a)		plain how this process is carried out in the laboratory and give relevant equations for electrode reactions.
			[4]
	(h)		ueous copper(II) sulfate can also be electrolysed using carbon electrodes.
	(2)	(i)	Write an equation for the reaction which takes place at the anode in this electrolysis.
			[1]
		(ii)	Explain why the colour of the copper(II) sulfate solution fades during this electrolysis.
			[1]
	(c)	Cop	oper is a transition element.
		(i)	Name two transition elements, or compounds of transition elements, which are used as catalysts. For each catalyst name an industrial product made using the catalyst.
			[2]

For Examiner's Use	elements.	(11)
	[2]	
	[Total: 10]	

B8 Fumaric acid is a colourless solid which can be extracted from plants.

For Examiner's Use

Fig. 4

(a)	Describe the reaction of aqueous fumaric acid with aqueous bromine, giving the equation for the reaction and stating any observations.
	[3]
(b)	A solution of fumaric acid was titrated against aqueous sodium hydroxide.
	$\mathrm{HO_{2}CCH=CHCO_{2}H}$ + $\mathrm{2NaOH}$ \rightarrow $\mathrm{NaO_{2}CCH=CHCO_{2}Na}$ + $\mathrm{2H_{2}O}$
	18.0 cm ³ of 0.200 mol/dm ³ sodium hydroxide were required to neutralise 60.0 cm ³ of fumaric acid solution.
	Calculate the concentration, in mol/dm ³ , of the fumaric acid solution.
	[3]

(c)	Suggest the type of condensation polymer which is made when fumaric acid reacts with ethane-1,2-diol, HO—CH ₂ —CH ₂ —OH	Fo Exami Us
	[1]	
(d)	Nylon is a condensation polymer. State one use of nylon.	
	[1]	
(e)	Describe two pollution problems caused by the disposal of non-biodegradable plastics.	
	[2]	
	[Total: 10]	

B9 The diagram shows the carbon cycle.

For Examiner's Use

Fig. 5

(a)	Describe the process of photosynthesis in simple terms.
	[2]
/ L \	Drow a det and group diagram for earlier diavide abouting the outer electrons only

(b) Draw a dot-and-cross diagram for carbon dioxide showing the outer electrons only.

[1]

(c)		ny scientists think that the burning of hydrocarbons such as octane, C ₈ H ₁₈ , contributes climate change.	For Examiner's Use
	(i)	Write an equation for the complete combustion of octane.	
		[1]	
	(ii)	Why do some scientists think that the burning of hydrocarbons contributes to climate change?	
		[1]	
(d)		the oceans carbon dioxide reacts with carbonate ions in seawater to form drogencarbonate ions.	
		$CO_2 + H_2O + CO_3^{2-} \rightleftharpoons 2HCO_3^{-}$	
	(i)	Microscopic plants remove carbon dioxide from the surface waters of the oceans. What effect does this have on the reaction above? Explain your answer.	
		[2]	
	(ii)	Name a carbonate compound which is soluble in water.	
	(,	[1]	
, ,	0 1		
(e)		lcium carbonate is used in flue gas desulfurisation. scribe this process and explain why it is important for the environment.	
		[2]	
		[Total: 10]	
		[Total: To]	

For Examiner's Use

coke	
(a)	Name an ore of iron.
(b)	Explain, by reference to the chemical reactions involved, why limestone is used in blast furnace.
, ,	
(c)	Coke burns in oxygen to form carbon dioxide. Explain, in terms of bond breaking and bond making, why this reaction is exothermic
(c)	Explain, in terms of bond breaking and bond making, why this reaction is exothermic
(c)	Explain, in terms of bond breaking and bond making, why this reaction is exothermic
(c)	Explain, in terms of bond breaking and bond making, why this reaction is exothermic
(c)	Explain, in terms of bond breaking and bond making, why this reaction is exothermic
(c)	Explain, in terms of bond breaking and bond making, why this reaction is exothermic
(c)	Explain, in terms of bond breaking and bond making, why this reaction is exothermic
(c)	Explain, in terms of bond breaking and bond making, why this reaction is exothermic
	Explain, in terms of bond breaking and bond making, why this reaction is exothermic. In the centre of the blast furnace iron(III) oxide, Fe ₂ O ₃ , is reduced by carbon monoto form iron and carbon dioxide. Near the bottom of the blast furnace the remainiron(III) oxide is reduced by carbon to form iron and carbon monoxide.

For Examiner's Use	How can this iron from the blast furnace be converted to mild steel?	(e)
	[1]	
	[Total: 10]	

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

		0	4 He Helium	20 Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon Xenon 54	222 Rn Radon 86	
	•	NII		19 T Sluorine	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	210 At Astatine 85	
		N		16 Oxygen 8	32 S Sulfur 16	79 Selenium 34	128 Te Tellurium 52	209 Po Polonium 84	
		>		14 N Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth	
		2		12 Carbon 6	28 Si Silicon	73 Ge Germanium 32	119 Sn Tin 50	207 Pb Lead 82	
	•	≡		11 Boron 5	27 A t Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium	
S						65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury	
The Periodic Table of the Elements						64 Cu Copper	108 Ag Silver 47	197 Au Gold	
e of the	Group					Nickel	106 Pd Palladium 46	195 Pt Platinum 78	
dic Tabl	Gro					59 Co Cobalt	Rhodium 45	192 Ir Iridium 77	
ne Perio			T Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 OS Osmium 76	
F						Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75	
						52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74	
						51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum	
						48 Ti Titanium 22	91 Zr Zirconium 40	178 # # Hafinium	
						45 Sc Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 AC Actinium 89 †
		II		9 Be Beryllium	24 Mg Magnesium 12	40 Ca Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88
		-		7 Lithium	23 Na Sodium	39 K Potassium	85 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87
2009)					5070/02	/O/N/09		

	077	,	,	177	2	7	7.11	7	007		701	00	71	11	
anoid series	140	141	144	147	OGI.	761	/61	601	791		/91	601	1/3	6/1	
andid series	ပီ	ቯ	Š	Pm	Sm	Ш	gq	T	۵	운	й	Tm	Υp	Γn	
	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
a = relative atomic mass	232	231	238	237	244	243	247	247	251	252	257	258		260	
X = atomic symbol	丘	Ъа	>	d N	Pu	Am	S	æ	ర	Es	Fm	Md		בֿ	
b = atomic (proton) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrencium 103	
															٦

* 58–71 Lanthanoid series † 90–103 Actinoid series

Key

The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).